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LETTER TO THE EDITOR

A few remarks on integral representation for zonal
spherical functions on the symmetric space
SU (N )/SO(N ,R)

J F Carĩnena and A M Perelomov†
Departamento F́ısica Téorica, Universidad de Zaragoza, 50009 Zaragoza, Spain

Abstract. The integral representation of the orthogonal groups for zonal spherical functions
of the symmetric spaceSU(N)/SO(N,R) is used to obtain a generating function for such
functions. For the caseN = 3 the three-dimensional integral representation reduces to a one-
dimensional one.

1. Introduction

The interest in studying classical and quantum integrable systems is always increasing.
These systems present some very nice characteristics which are related to different algebraic
and analytic properties. For instance, the connection of completely integrable classical
Hamiltonian systems with semi-simple Lie algebras was established more than 20 years ago
in [1] and the relationship with quantum systems in [2].

On the other hand, in [3, 4] the possibility of finding the explicit form of the Laplace–
Beltrami operator for each symmetric space appearing in the classification given in the
classical Helgason book [5] was also shown by associating to it a quantum mechanical
problem.

The search for the eigenfunctions of such operators is not an easy task. These functions
are the so-called zonal spherical functions, and for one special case and for the case of
symmetric spaces with root systems of the typeAN−1 they were found explicitly in [6].

Our aim in this letter is to present some remarks concerning the integral representation
for zonal spherical functions on the symmetric spaceSU(N)/SO(N,R). This representation
will be used to obtain a generating function for such zonal spherical functions.

We recall that ifG is a connected real semi-simple Lie group andT ρ denotes an
irreducible unitary representation ofG with support in the Hilbert spaceH, whereρ is a
parameter characterizing the representation, the representationT ρ is said to be of class I if
there exists a vector|90〉 such thatT ρ(k)|90〉 = |90〉, for any elementk in the maximal
compact subgroupK of G. The function defined by the expectation value ofT ρ is called
a zonal spherical function belonging to the representationT ρ . Zonal spherical functions
satisfy a kind of completeness condition like that of coherent states.

The paper is organized as follows. In order to make the paper more self-contained
we give in section 2 the general definitions and properties of zonal spherical functions.
The particular caseN = 2 is considered in section 3, and then the formulae are extended
in section 4 to the caseN = 3. Section 5 is devoted to the introduction of an integral
representation for the generating function for zonal spherical functions for the symmetric
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spaceSU(N)/SO(N,R) and the integrals arising in the expression are explicitly computed
in the particular casesN = 2 andN = 3.

2. Zonal spherical functions

Let G− = SL(N,R) be the group of real matrices of orderN with determinant equal
to one. This group contains three important subgroups, to be denotedK,A andN . The
subgroupK = SO(N,R) is the compact group of real orthogonal matrices, the subgroup
A is the Abelian group of inversible real diagonal matrices andN is the subgroup of lower
triangular real matrices with units on the principal diagonal, which is a nilpotent group.

Using the polar decomposition of a matrix, the homogeneous spaceX− = G−/K can
be identified with the space of real positive-definite symmetric matrices with determinant
equal to one. It is known that any elementg ∈ G− may be decomposed in a unique way
as a productg = kan, with k ∈ K, a ∈ A andn ∈ N , respectively, the so-called Iwasawa
decomposition. We denote the elements in such a factorization ask(g), a(g) andn(g), i.e.
g = k(g) a(g) n(g). Correspondingly, the linear space underlying the Lie algebrag of G−

can be decomposed as a direct sum of the linear spaces of the Lie subalgebrask of K, a of
A andn of N , i.e. g = k⊕ a⊕ n. Let us also denote asa∗ the dual space ofa and so on.

There are natural left and right actions of groupG− onK andN , respectively, induced
by left and right multiplication, respectively, which are defined by the formulae

kg = k(gk) ng = n(ng) (2.1)

and, for anyλ ∈ a∗, we may construct the representationT λ(g) of the groupG− in the
space ofL2(K) or L2(N ) of square integrable functions onK or N by the formula

[T λ(g) f ](k) = exp(iλ− ρ, H(gk))f (kg−1
) (2.2)

or

[T λ(g)f ](n) = exp(iλ− ρ,H(ng))f (ng) (2.3)

whereH(g) is defined bya(g) = expH(g) and ρ is given by one half of the sum of
positive roots of the symmetric spaceX−,

ρ = 1

2

∑
R+
α.

This so-called representation of principal series is unitary and irreducible. It has the
property that in the Hilbert spaceHλ there is a normalized vector|90〉 ∈ Hλ which is
invariant under the action of groupK:

T λ(k)|90〉 = |90〉. (2.4)

Let us consider the function

8λ(g) = 〈90| T λ(g) |90〉. (2.5)

This function is called a zonal spherical function and has the properties

8λ(k1gk2) = 8λ(g) 8λ(k) = 1 ∀k ∈ K,8λ(e) = 1. (2.6)

For the realization ofHλ asL2(K), we take|90〉 as the constant function90(k) ≡ 1,
and then we have an integral representation for8λ(g):

8λ(g) =
∫
K

exp(iλ− ρ,H(gk))dµ(k)
∫
K

dµ(k) = 1 (2.7)
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where dµ(k) denotes an invariant (underG−) measure onK. Note that due to (2.6) the
function8λ(g) is completely defined by the values8λ(a), a ∈ A.

Here 8λ(g) is the eigenfunction of the Laplace–Beltrami1j operators and
correspondingly8λ(a) is the eigenfunction of the radial parts10

j of these operators; in
particular,

10
2 =

N∑
j=1

∂2
j + 2κ

N∑
j<k

coth(qj − qk)(∂j − ∂k) κ = 1

2
, ∂j = ∂

∂qj
, aj = eqj . (2.8)

Note that the analogous consideration of groupsG− = SL(N,C) andG− = SL(N,H)
over complex numbers and quaternions gives us the corresponding integral representations
for κ = 1 andκ = 2.

Note that the above construction is also valid for the dual spacesX+ = G+/K, where
G+ = SU(N) is the group of unitary matrices with determinant equal to one. In this case
the representationT λ(g) is defined by a setl = (l1, . . . , lN−1) of (N − 1) non-negative
integer numberslj and the integral representation (2.7) takes the form

8l(g) =
∫
K

exp(l, H(gk))dµ(k)
∫
K

dµ(k) = 1 (2.9)

and8l(g) is the eigenfunction of the radial part of the Laplace–Beltrami operator

10
2 =

N∑
j=1

∂2
j + 2κ

N∑
j<k

cot(qj − qk)(∂j − ∂k) κ = 1

2
, ∂j = ∂

∂qj
, aj = xj = eiqj . (2.10)

The elementk of the groupSO(N,R) is the matrix(kij ) and may be considered as the
set ofN unit orthogonal vectorsk(j) = (k1j , . . . , kNj ) from which we may construct the set
of polyvectors

k(i) k(i1,i2) = k(i1) ∧ k(i2) k(i1,i2,i3) = k(i1) ∧ k(i2) ∧ k(i3) . . . . (2.11)

There is a natural action of the groupG on the space of polyvectors and the integral
representation (2.9) may now be written in the form

8l(x1, . . . , xN) =
∫
4
l1
1 (x; k) · · ·4lN−1

N−1(x; k) dµ(k(1), . . . , k(N−1)) (2.12)

where

41(x; k) =
∑
j

k
(1)
j

2xj 42(x; k) =
∑
i<j

(k(1) ∧ k(2))2ij xixj

43(x; k) =
∑
i<j<l

(k(1) ∧ k(2) ∧ k(3))2ij l xixjxl . . . .

Here dµ(k(1), . . . , k(N−1)) is the invariant measure onK such that∫
K

dµ (k(1), . . . , k(N−1)) = 1. (2.13)

3. The caseN = 2

In this case, the integral representation takes the form

8l(x1, x2) =
∫

[(k′ak)11]l dµ(k) =
∫
(k2

11x1+ k2
21x2)

l dµ(k)
∫

dµ(k) = 1 (3.1)
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wherek′ is the transpose matrix ofk, or

8l(x1, x2) =
∫
S1
(n2

1x1+ n2
2x2)

l dµ(n) (n, n) = n2
1+ n2

2 = 1 (3.2)

where dµ(n) = (1/2π) dϕ is an invariant measure on an unit circleS1 in R2.
So,

8l(x1, x2) =
∑

k1+k2=l
Clk1,k2

x
k1
1 x

k2
2 (3.3)

and

Clk1,k2
= l!

k1!k2!
〈n2k1

1 n
2k2
2 〉 〈n2k1

1 n
2k2
2 〉 =

∫
S1
n

2k1
1 n

2k2
2 dµ(n). (3.4)

The integral is easily calculated by using a standard parametrizationn1 = cosϕ, n2 =
sinϕ, dµ(n) = (1/2π) dϕ. We obtain

〈n2k1
1 n

2k2
2 〉 =

( 1
2)k1(

1
2)k2

(1)k1+k2

(3.5)

where(a)k is the Pochhammer symbol(a)k = a(a + 1) · · · (a + k − 1). So finally we have

Clk1k2
= ( 1

2)k1(
1
2)k2

(1)k1(1)k2

l = k1+ k2 (3.6)

8l(x1, x2) =
∑

k1+k2=l

( 1
2)k1(

1
2)k2

(1)k1(1)k2

x
k1
1 x

k2
2 . (3.7)

If we put x1 = eiθ , x2 = e−iθ , then8l(x1, x2) = AlPl(cosθ), wherePl(cosx) is the
Legendre polynomial.

These formulae may be easily extended to theN -dimensional case. Namely, we have

8(l,0,...,0)(x1, . . . , xN) =
∫
SN−1

(n2
1x1+ · · · + n2

NxN)
l dµ(n)

∫
dµ(n) = 1 (3.8)

where dµ(n) is invariant measure onSN−1 and

8(l,0,...,0)(x1, . . . , xN) =
∑

k1+···+kN=l
Clk1...kN

x
k1
1 . . . x

kN
N

Clk1...kN
= l!

k1! . . . kN !
〈n2k1

1 . . . n
2kN
N 〉

〈n2k1
1 . . . n

2kN
N 〉 =

( 1
2)k1 . . . (

1
2)kN

( 1
2N)l

. (3.9)

So

Clk1...kN
= ( 1

2)k1 . . . (
1
2)kN

(1)k1 . . . (1)kN

(1)l
( 1

2N)l
l = k1+ · · · + kN . (3.10)

4. The caseN = 3

In this case, the element of the orthogonal groupSO(3,R) has the form

k =
(
n1 l1 m1

n2 l2 m2

n3 l3 m3

)
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i.e. it may be represented by the three unit vectors which are orthogonal to each other

n, l,m n2 = l2 = m2 = 1 (n, l) = (l, m) = (m, n) = 0

and the integral representation for zonal spherical polynomials takes the form

8pq(x) =
∫
K

(n2
1x1+ n2

2x2+ n2
3x3)

p

(∑
j<k

(nj lk − nklj )2xjxk
)q

dµ (n, l) (4.1)

where the integration is taken on the orthogonal groupK = SO(3,R), which is equivalent
to the space of two unit orthogonal vectorsn and l.

Note thatmk = εkij ni lj ; we also havex1x2 = x−1
3 , . . . . Hence,

8pq(x1, x2, x3) =
∫
K

(n2
1x1+ n2

2x2+ n2
3x3)

p(m2
1x
−1
1 +m2

2x
−1
2 +m2

3x
−1
3 )q dµ (n,m). (4.2)

For vectorsn andm the standard parametrization through Euler anglesϕ, θ andψ may be
used:

n = (cosϕ sinθ, sinϕ sinθ, cosθ) m = cosψ · a + sinψ · b
a = (− sinϕ, cosϕ, 0), b = (− cosϕ cosθ,− sinϕ cosθ, sinθ) (4.3)

with dµ(k) = dµ(n,m) = A sinθ dθ dϕ dψ , and in the preceding expression we have a
three-dimensional integral which may be calculated using the generating functions.

5. Generating functions

Let us define the generating function by the formula

F(x1, x2, . . . , xN ; t1, . . . , tN−1) =
∑

8l1···lN−1(x1, . . . , xN)t
l1
1 · · · t lN−1

N−1. (5.1)

Then we have the integral representation

F(x1, x2, . . . , xN ; t1, . . . , tN−1) =
∫ [ N−1∏

j=1

(1−4j(x; k)tj )
]−1

dµ(k). (5.2)

Let us introduce the coordinate system such thata andb are two unit orthogonal vectors
in the two-dimensional plane orthogonal to the set of vectors{k(1), . . . , k(N−2)}. Then, an
arbitrary unit vectorn in this plane has the form cosψ · a+ sinψ · b, and we may integrate
first on dµ(n). The integral representation (5.2) takes the form

F(x1, x2, . . . , xN ; t1, . . . , tN−1) =
∫

[Aijninj ]
−1 dµ(N−2)(k) dµ(n). (5.3)

The integral on dµ(n) may be easily calculated and we have

F(x1, x2, . . . , xN ; t1, . . . , tN−1) =
∫

[D]−1/2 dµ(k(1), . . . , k(N−2)) (5.4)

whereD = det(Aij ), Aij = Aij (x; k(1), . . . , k(N−2)).
In the simplest caseN = 2, we have

F(x1, x2; t) = [(1− x1t)(1− x2t)]
−1/2 (5.5)

from which formula (3.7) for8l(x1, x2) follows.
In the caseN = 3, the integration on dµ(ψ) gives

F(x1, x2, x3; t1, t2) =
∫
B−1(n)C−1/2(n) dµ(n)

∫
dµ(n) = 1 (5.6)
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where

B = 1− (n2
1x1+ n2

2x2+ n2
3x3)t1 C = (1− x−1

2 t2)(1− x−1
3 t2)n

2
1+ · · · . (5.7)

The crucial step for further integration is the use of the formula

B−1C−1/2 =
∫ 1

0
dξ [B(1− ξ2)+ Cξ2]−3/2. (5.8)

Using this formula, we obtain

F(x1, x2, x3; t1, t2) =
∫ 1

0
dξ
∫

[E(x1, x2, x3; t1, t2, n, ξ)]−3/2 dµ(n) (5.9)

where

E(x1, x2, x3; t1, t2, n, ξ) =
∑
j

ej (x1, x2, x3; t1, t2, ξ)n2
j . (5.10)

We can now integrate on dµ(n) and finally we obtain the one-dimensional integral
representation for the generating function

F(x1, x2, x3; t1, t2) =
∫ 1

0
dξ [H(x1, x2, x3; t1, t2, ξ)]−1/2 (5.11)

whereH = e1e2e3 and the functionsej (ξ ; t1, t2) are given by

hj (ξ ; t1, t2) = 1− dj (t1, t2)(1− ξ2) dj (t1, t2) = (xj t1+ x−1
j t2− t1t2). (5.12)

From this it follows that ifz1 = x1+ x2+ x3, andz2 = x1x2+ x2x3+ x3x1, then

H = a3
0 − a2

0[z1τ1+ z2τ2] + a0[z2τ
2
1 + z1τ

2
2 + (z1z2− 3)τ1τ2]

−[τ 3
1 + τ 3

2 + τ1τ2[(z2
2 − 2z1)τ1+ (z2

1 − 2z2)τ2]] (5.13)

where a0 = 1+ (1− ξ2)t1t2, τ1 = (1− ξ2)t1, τ2 = (1− ξ2)t2. Note that from (5.13)
it follows that the integral (5.11) is elliptic and it may be expressed in terms of standard
elliptic integrals.

ExpandingF(x1, x2, x3; t1, t2) in a power series of the variablet2, one obtains

F(x1, x2, x3; t1, t2) =
∞∑
q=0

Fq(x1, x2, x3; t1)tq2 (5.14)

and we have

F0(x1, x2, x3; t) =
∫ 1

0
dξ [H0]−1/2 (5.15)

and

F1 = 1

2

∫ 1

0
dξH1[H0]−3/2 (5.16)

where

H0 = 1− z1τ1+ z2τ
2
1 − τ 3

1

H1 = (1− ξ2)z2− [3ξ2+ z1z2(1− ξ2)]τ1+ [2z1ξ
2+ (1− ξ2)z2

2]τ 2
1 − z2τ

3
1 .

From the integral representation (5.11) many useful formulae may be obtained, here we
give just one of them: whenz1 andz2 go to infinity,

8pq(z1, z2) ≈ Apqzp1 zq2 Apq =
( 1

2)p(
1
2)q

(1)p(1)q

(1)p+q
( 3

2)p+q
. (5.17)
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A more detailed version of this letter will be published elsewhere.
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